G484 The Newtonian World

Qı	lest	ion	Expected Answers	Marks	Additional guidance
1	а	i	Force is proportional to the rate of change of momentum	B1	Allow "equal" instead of proportional, allow
			(QWC This mark can only be scored if momentum is spelled correctly)		"change in momentum over time" (WTTE)
					Do not allow F = ma or in words
		ii	When one body exerts a force on another the other body exerts an equal (in		Must refer to two bodies. Do not allow a bare
			magnitude) and opposite (in direction) force on the first body (WTTE)	B1	"Action and reaction are equal and opposite".
	b	i	area: number of squares correctly counted: 20 - 24 (500 - 600)	C1	First mark for correct number of squares
			= 2.2 Ns {allow 2.0 to 2.4}	A1	Second mark for correct conversion to Ns
					If 2 Δ s assumed, area = 1.68 Ns and scores
					1 mark
					1680 scores 0 (2 errors) but 2200 scores 1
					mark
		ii	Impulse QWC must be spelled correctly	B1	No not allow change of momentum.
		iii	recall of Impulse = change in momentum OR I = mv OR mv -mu	C1	Allow 'Area = mv'
			$(mv = 2.2 hence v = 2.2/0.046) v = 47.8 ms^{-1}$ (hence about 50)	A1	Allow ecf from cand's value for (b)(i):
			(2.0 gives 43.5, 2.1 45.7, 2.3 50, 2.4 52.2)		e.g. mv = 1.68 v = 36.5 ms ' and scores 2
					marks
					$mv = 2200 v = 47800 ms^{-1} also scores$
					2marks! (<u>ect</u>)
		ÍV	initial horizontal velocity = $50\cos 42 = (37.2 \text{ ms}^3)$	C1	Allow 1 mark for correct identification of
			initial vertical velocity = $50\sin 42 = (33.5 \text{ ms}^3)$	C1	cosine and sine components of v, without
			time taken to reach maximum height = 33.5/9.8 (= 3.41 s)	C1	SUBSTITUTION.
					Allow ect for cand's value of v throughout
			total time to reach ground = $2x \ 3.41 = 6.82 \ s$ hence distance = $50\cos 42x$ total	A1	e.g if 47.8 is used for V, distance = 232 m and
			time = 37.2x6.82 = 253 m		this scores <u>four</u> marks.
				D1	ii 47000 is used distance = 2.32 x 10° m!
			any valid assumption: eg no air resistance / horizontal velocity is constant/	ы	Also allow "only the gravitational force is
			acceleration due to gravity is 9.8 (or 10) ms ^{2} / ball follows a parabolic or		AISO allow Only the gravitational toffee IS
			symmetrical path (WTTE).		acting no inclion only gravity
			Total	12	

Qu	esti	ion	Expected Answers	Marks	Additional guidance
2	2 a i _{(V} .		$(v = 2\pi r/t) t = 2\pi 60/0.26 = 1450 s$	B1	Correct answer is 1449.96 hence allow 1.4 X 10 ³ Do not allow a bare 1.5 x10 ³
		ii	(ii) correct substitution into F = mv^2/r : eg F = (9.7x10 ³ x0.26 ²)/60 F = 10.9 N	C1 A1	Allow 11 N
	b	i	THREE correct arrows at A, B and C all pointing towards the centre (judged by eye)	B1	Ignore starting point of arrow
		ii	1. Greatest reaction force is at C because it supports weight of sock AND provides the required upward resultant (centripetal) force (WTTE)	M1 A1	This is a mandatory M mark. The second mark cannot be gained unless this is scored. Any indication that candidates think that the centripetal force is a third force loses this second and possibly the next mark.
			2. Least at A because sock's weight provides part of the required downward resultant (centripetal) force (WTTE)	B1	They must make correct reference to the resultant force that provides the required centripetal force/acceleration. Allow answers using the equation $F = mv^2/r$ such as N _c - mg (at C) = centripetal force OR mv^2/r OR mg +N _A (at A) = centripetal force OR mv^2/r
			Total	7	

Question		on	Expected Answers		Additional guidance
3	а		arrows (at least one) indicating direction is towards the planet. All lines looking as though they would meet at the centre judged by eye	B1 B1	At least 4 drawn and care taken Some of the lines must be outside the planet.
	b	i	(mg = GMm/r ² and hence) $M = gr^{2}/G$ correct substitution $M = 24.9x(7.14 \times 10^{7})^{2}/6.67x10^{-11}$ $= 1.9 \times 10^{27}$ Kg (i.e about 2x10 ²⁷)	C1 M1 A1	Equation needs to be rearranged as shown for C1 mark
		ii	correct substitution into V= $(4/3)\pi r^3 = (4/3)\pi (7.14 \times 10^7)^3 \{= 1.52 \times 10^{24} \text{ m}^3\}$ density = mass/volume = 1.9 ×10 ²⁷ /1.52 × 10 ²⁴ = 1250 kg m ⁻³	C1 A1	If m= 2×10^{27} kg is used d = 1312 scores 2 marks
			Total	7	

Qu	Question		Expected Answers	Marks	Additional guidance
4	а		The resultant force is zero (WTTE) Forces are weight and force from the spring (allow tension)	B1 B1	For the first mark allow - sum of forces is zero, - upward force = downward force, - forces cancel each other BUT do not allow forces are balanced Allow force of gravity for weight
	b	i	acceleration is (directly) proportional to displacement and is directed in the opposite direction to the displacement. (WTTE)	M1 A1	allow $a=-(2\pi f)^2 x$, provided a and x are identified and –ve sign must be explained. Do not allow "acceleration is prop to negative displacement for second mark. Allow always towards the equilibrium position
		ii	x= acos 2π ft $\Rightarrow 2\pi$ f = 7.85 (expressed in any form) f = (7.85/ 2π) = 1.25 (1.249Hz)	M1 A1	Do not allow use of Fig 4.2 to show T= 0.8s and hence f=1.25 Hz. This scores 0.
		iii	correct subst ⁿ in $V_{max} = (2\pi f)A \Rightarrow V_{max} = 2\pi x 1.25 x 0.012$ $V_{max} = 0.094 \text{ ms}^{-1}$	C1 A1	Many will forget to change 12 mm into 0.012m and have $v = 94 \text{ ms}^{-1}$ this scores 1 mark.
	C		roughly sinusoidal graph of <u>correct period</u> ie 0.8s <u>90° out of phase</u> with displacement graph (i.e. starts at origin with -ve initial gradient) <u>maximum velocity</u> correctly shown as 0.094 {allow ecf from (iii)}	B1 B1 B1	
			Total	11	

Question		on	Expected Answers	Marks	Additional guidance
5	а	i	correct substitution in E = mc $\Delta \theta$: eg E = 0.08x4180x40	C1	Allow 80x4180/0.05x2460 (13376/4.92) for this
			ratio = $0.08 \times 4180 \times 40/5 \times 10^{-5} \times 2460 \times 40 = 2.7(2) \times 10^{-5}$	AI	1: 2700 does not score the second mark.
		ii	Any valid advantage: eg car cooling systems <u>because</u> it absorbs large amounts of heat for a small rise in temp OR ideal fluid for central heating systems <u>because</u> it releases large amounts of heat for a small drop in temp. OR helps to maintain constant body temperature <u>since</u> body is mainly water which absorbs lots of heat for small temp rise	B1 B1	First mark for valid situation Second mark for correct explanation of <u>why</u> the high value of the shc is helpful.
	b		<i>labelled diagram (2 marks):</i> liquid in vessel with <u>electrical</u> heater (submerged) and thermometer ammeter connected in series between supply and heater AND voltmeter connected across heater.	B1 B1	Allow use of joule meter if convincingly connected to heater and power supply i.e. 2 wires from power supply two wires to heater
			<i>list of measurements (3 marks):</i> mass of liquid, initial and final temperature/change of temp (of the liquid) I, V and t values OR energy meter readings OR power and time	B1 B1 B1	Allow such things as "find mass", "known mass", "10K temp rise", "time for 2 minutes" "known power", etc.
			explanation (1 mark):		
			$E = mc\Delta\theta$ rearranged to $c = E/m\Delta\theta$	B1	
			 uncertainties (2 marks) each stated with explanation of remedy: e.g. heat losses (makes E or Δθ uncertain) (solved by) insulating beaker/use lid false temp reading (solved by) stir the liquid temp continues to rise after heater switched off measure highest value thermal capacity of vessel (solved by) take this into account in calculation 	B1 B1 max 2	Allow ItV/m∆θ. Do not allow "repeat the experiment". Give credit for valid suggestions if mentioned anywhere in the description of the experiment.
			Total	12	

Question)	Expected Answers	Marks	Additional guidance
6	а		 (n) number of <u>moles</u> (T) absolute temperature OR thermodynamic temp OR temp measured in Kelvin 	B1 B1	Accept K for Kelvin
	b	i	(When gas is heated) molecules gain KE/move faster this would cause more collisions/sec (with the walls) collisions exert more force/greater change in momentum per collision For constant pressure fewer collisions/sec are required Constant pressure is achieved by the increase in volume OR with a bigger volume there are fewer collisions/sec	B1 B1 B1 B1 B1 <i>max 4</i>	If no reference to <u>rate</u> of collisions, max of 3 marks This must be explained fully but can be done with reference to $P = (1/3)\rho < c^2 >$
		ii	correct substitution in pV/T = constant: OR V/T = constant e.g. $1.2x10^{-4}$ /293 = V/363 V= (363/293)x1.2x10^{-4} = 1.49 x10^{-4} m ³ .	C1 A1	Both temps must be in Kelvin. Allow 1.5 x 10^{-4} m ³
	С		Use of $1/2m < c^2 > = 3/2 \text{ kT}$ Correct substitution: $\sqrt{} = \sqrt{(3kT/m)} = \sqrt{(3x1.38 \times 10^{-23}x363/4.7x10^{-26})}$ $\sqrt{} = 565 \text{ ms}^{-1}$	C1 C1 A1	If 90 [°] C is used $\sqrt{\langle c^2 \rangle} = 282 \text{ ms}^{-1}$ and scores 2 marks Allow 570 ms ⁻¹ If they do not square root, they get 319225 ms ⁻¹ and score 2 marks
			Total	11	

GCE

Advanced GCE G484

The Newtonian World

Mark Scheme for June 2010

June	2010
------	------

Question	Expected Answers	Marks	Additional guidance
1 (a)	The magnitude of the impulse on each object is the same	B1	For 3 or 4 ticks mark and deduct
	Total energy is conserved	B1	1 mark for each error.
(b) (i)	Correct use of ¹ / ₂ mv ²	C1	0.27 J scores 1 st mark
	Loss of KE = 0.03(144-81) = 1.9 (or 1.89) J	A1	Do not allow 1.8
(b) (ii)	Change in momentum = (0.06x12)+(0.06x9) = 1.26 (Ns)	C1	Award 1 mark for 1.2 N
	Average force=rate of change of momentum = 1.26/0.15 = 8.4 (or 8) N	A1	ignore minus signs
(b) (iii)	8.4 N (or - 8.4)	B1	Allow ecf from (ii)
(c) (i)	ANY 3 of the following		Allow
	particles move with <u>rapid, random</u> motion (WTTE)	B1	" gravitational force on
	elastic collisions	B1	molecules is negligible"
	negligible (or zero) volume of atoms (compared with volume of container)	B1	Do not allow a bare
	no intermolecular forces (except during collisions)/all internal energy is KE		"large number of particles".
	collision time negligible (compared to time between collision).		
(c) (ii)	molecules make collisions with walls/surface (WTTE)	B1	Do not allow a bare "molecules
	(hence) exerts a force on the wall (or each collision has a change of		collide with each other"
	momentum)	B1	
	Pressure = force/area	B1	
	Total	13	

June	2010
------	------

Question	Expected Answers	Marks	Additional guidance
2 (a) (i)	Horizontal <u>component</u> of L provides the centripetal force (WTTE)	B1	
	Vertical <u>component</u> of L balances the weight (WTTE)	B1	
(a) (ii)	$F = mv^2/r$ correct rearranged into $v = \sqrt{(Fr/m)}$	C1	Allow correct substitution of
	$v = \sqrt{(1.8 \times 10^6 \times 2000 / 1.2 \times 10^5)} = 173 \text{ m s}^{-1} \text{ (or 170)}$	A1	values into $F = mv^2/r$ for C1 mark
(b)	$mv^2/r = GMm/r^2$	B1	Do not allow a bare $v^2 = GM/r$ for
	$T = 2\pi r/v \qquad \qquad \Lambda_{\pi^2} r^3$	M1	the first mark – we need to see
	Correct manipulation of equations to give $T^2 = \frac{4\pi T}{GM}$	A1	where this has come from.
(c) (i)	Equatorial orbit (WTTE) (QWC mark)	B1	QWC equatorial or equator must
	Period is 24h/1day/same as Earth OR moves from West to East (WTTE)	B1	be spelled correctly
(c) (ii)	Correct rearrangement of $T^2 = (4\pi^2 r^3/GM)$ to give $r^3 = T^2GM/4\pi^2$	C1	$(1 \text{ day} = 8.64 \text{ x}10^4 \text{ s} \text{ is given on})$
	correct sub. $r^3 = \{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (8.64 \times 10^4)^2\}/4\pi^2 = 7.57 \times 10^{22}$	C1	the data sheet).
	$r = 4.23 \times 10^7 \text{ m}$ (or 4.2 or 4.3 x 10 ⁷)	A1	For those who use $g = GM/r^2$
			with $g = 9.81$ award 1 mark
			for r= 6.4×10^6 m.
	Total	12	

Question	Expected Answers	Marks	Additional guidance
3 (a)	Acceleration is (directly) proportional to the	B1	Allow "fixed point" or "point"
	displacement/distance (from the equilibrium position/central pt)		Allow acc. is in opposite direction to
		B1	displacement (WTTE)
	Acceleration is always directed towards the equilibrium		If formula is used: allow a ∞ -x for 1 st mark
	position/central point.		and 2 nd mark if x is stated as displacement.
(b) (i)	Curve symmetrical about energy axis with maximum at 18	B1	Ignore points where graphs cross
	zero at +0.04 and – 0.04	B1	Give bod if not labelled K but correct
(b) (ii)	Horizontal straight line passing 18	B1	Give bod if not labelled T but correct
(c) (i)	0.04 m	B1	
(c) (ii)	$\frac{1}{2}m(v_{max})^2 = 0.018$	C1	Many will use 18 instead of 0.018. This
	v _{max} = √(2x0.018/0.12) = 0.55 ms ⁻¹ (0.548)	A1	results in 17.3 and scores 1 mark.
			Allow ecf for cand's value of max KE.
			Do not allow 0.54 for second mark.
(c) (iii)	correct use of $v_{max} = 2\pi fA$	C1	Allow ecf for cand's values from (c)(i)
			and/or (c) (ii). E.g for 17.3 f = 68.8 Hz. This
	f = (0.55/0.04x2π) = 2.2 (or 2.19 or 2.18)Hz	A1	scores 2 marks e.c.f.
			Do not allow 2.1
(d)	Award first mark for stating the 'driver' of the oscillations	B1	No marks to be awarded for a bare
	and the second mark for stating what is ' driven' i.e. oscillating	B1	statement of the example e.g MRI.
	useful applications: e.g.		
	Cooking: <u>micro waves</u> cause <u>water molecules</u> to resonate		Please allow any other valid examples.
	Woodwind: reed causes air column to resonate		
	Brass: lips cause air column to resonate		
	MRI: <u>radio waves</u> (in a magnetic field) cause <u>nuclei/proton</u> to		
	resonate		
	Radios: <u>radio waves</u> cause <u>electrons/current</u> to resonate		
	Person on swing: intermittent pusnes cause swing to		
	resonate		
	problem:	B1	
	Bridges: wind/walkers causes bridge to resonate	B1	
	Vehicles: engine vibrations cause panels/mirrors to		
	resonate Earthquakes: ground vibrating causes buildings to		
	resonate		
	Total	14	

G484	Mark Scheme	June 2010	
Question	Expected Answers	Marks	Additional guidance
4 (a) (i)	Brownian (motion) (QWC mark)	B1	QWC Brownian spelled correctly
(a) (ii)	ANY two from the following three:		Answers that refer to smoke particles only
	air molecules are moving in different directions/randomly	B1	cannot score the marks.
	with different speeds	B1	
	mass/size of air molecules is smaller than smoke particles		
(b) (i)	$vol = (4/3) \pi r^3 = 5.58 \times 10^{-3}$	C1	Allow ecf for wrong volume
	correct sub into $pV = nRT$ i.e. with T as 290K	C1	Allow use of $pV = NkT$ and $n = N/N_A$
	$n = (2.6 \times 10^5 \times 5.58 \times 10^{-3})/8.31 \times 290 = 0.602$ moles	A1	Allow ecf for cand's value for n
	mass = n x 0.028 = 0.0169 kg (0.016856)	A1	If 17° C used allow maximum of 2 marks
			for n = 10.3 moles and m = 0.29 kg
(b) (ii) 1	no net heat flow between objects (WTTE)	B1	Allow "they are at the same temp."
(b) (ii) 2	correct use of P/T = constant: e.g. P = $(273/290) \times 2.6 \times 10^5$	C1	Allow correct use of pV=nRT
	$P = 2.45 \times 10^5$ (or 2.4 x 10 ⁵ or 2.5 x 10 ⁵)Pa	A1	
	Total	10	

Question	Expected Answers	Marks	Additional guidance
5 (a) (i)	Initial KE of car = $0.5 \times 970 \times 27^2 = 3.5 \times 10^5 \text{ J} (353565 \text{ J})$	B1	
(a) (ii)	Work done = Av Force x distance moved	C1	If $v^2 = u^2 + 2as$ is used. accept
	Av Force = 3.5 x 10 ⁵ J/40 = 8.8 x 10³ N (or 8750 N)	A1	$a = 0.27^{2}/(2x40) = 9.113 \text{ ms}^{-2} \text{ C1}$
	(or 353565/40 = 8836.7 N)		$F = ma = 970x9.11 = 8.84 \times 10^3 \text{ N A1}$
	Assumption: no air resistance	B1	Allow air friction or drag
(b) (i)	correct use of E = mc $\Delta\theta$: 3.5 x 10 ⁵ /4 = 1.2x520x $\Delta\theta$	C1	If cand. forgets to divide by 4 allow any value
	$\Delta \theta = 140^{\circ}C$ (if 353565 is used $\Delta \theta = 142^{\circ}C$)	A1	between 560 and 570 for 1 mark.
(b) (ii)	Air resistance will be acting (slowing down the car)	M1	Do not allow sound since only a tiny
	(hence) reducing the KE of the car (WTTE)	A1	proportion of energy is lost in this way.
			Allow other valid comments as alternative
	The discs are hotter than the surroundings	B1	ways of scoring one or both of the 'B' marks:
	(hence) <u>energy/heat will be lost from discs/brakes</u> (WTTE)	B1	e.g. 'hot spots' on discs; discs are different.
			Try to credit a well argued case based upon
			correct physics- e.g. wheels locking.
(b) (iii)	Any valid suggestion: e.g. use a material with a higher s.h.c		Confusion between shc and heat capacity
	use a disc with a higher heat capacity	B1	should not be penalised.
	Use discs of greater mass		
	put holes in the discs (to increase air flow)		
	Total	11	

4

Physics A

Advanced GCE Unit **G484:** The Newtonian World

Mark Scheme for January 2011

G484 The Newtonian World JAN 2011 STANDARDISATION (SCORIS) mark-scheme

Question	Expected Answers	Marks	Additional guidance
1 (a)(i)	Total momentum is constant/conserved	B1	"total momentum before = total momentum after"
			Allow $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ or equivalent
			Do not accept "momentum is constant"
	For a closed system/provided no external forces (WTTE)	B1	Do not accept "momentum is conserved"
(a)(ii)	Some <u>loss</u> of <u>kinetic</u> energy (OR KE OR E_K)(during the collision)	B1	Allow answers in terms of Coeff't of Res.
			Coeff't of Restitution < 1
			e.g. speed of separation/speed of approach <1
(a)(iii) 1	(2.4x3.0) - (1.2x2.0) = 3.6v	C1	must see -ve sign hence 2.67 scores ZERO
	$v = 1.3 \text{ m s}^{-1}$	A1	Allow 4/3 ms ⁻¹ and 1.34 but not 1.4
(a)(iii) 2	Any KE correctly calculated: 10.8J, 2.4J, (or 13.2 or 8.4), 3.18J	C1	ECF from a(iii)1 If 1.3 ms ⁻¹ is used KE after is 3.04
			ECF from a(iii)1 provided final KE is less than
	13.2 and 3.18 (or any value between 3.2 and 3.0) <u>seen</u>	A1	initial KE
			Allow answers in terms of Coeff't of Res. e.g.
			speed of separation/speed of approach = $0/5 = 0$
(b)(i)	valid sub ⁿ in V = π r ² h: e.g. π x 5.0 ² x12 x 5.0 (= 1500 π /4710 m ³)	C1	
	m = Vρ = π x 5.0 ² x 12 x 5.0 x 1.3 = 6126 kg	A1	Do not accept a bald answer of 6000
(b)(ii) 1	momentum = 6130 x 12 = 7.4 (or 7.36) x 10^4 (kg m s⁻¹)	B1	Allow 7.2×10^4 if 6000 kg used & ecf from (b)(i).
(b)(ii) 2	F = 73600/5	C1	
	F = 14700 N	A1	Accept 14400 if 7.2x10 ⁴ is calculated in 1
(b)(ii) 3	mass of helicopter = 14700/9.81 = 1500 kg	B1	Allow ecf from (b)(ii)2. Allow g=10 N/kg
	Total	13	

Question	Expected Answers	Marks	Additional guidance
2 (a)(i)	resultant OR net OR overall force acts (on object) perpendicular to the	B1	Ignore any reference to
	velocity OR towards the centre of the circle		"centripetal force"
(a)(ii)	velocity OR direction is always changing	B1	Allow a (resultant) force is acting
	acceleration is in direction of force OR is towards the centre/perp. to	B1	(hence there is an acceleration))
	velocity		
(b)	centripetal force OR mv ² /r = GMm/r ² OR v ² /r = GM/r ²	C1	
	$v^2 = GM/r \Rightarrow r = GM/v^2$	C1	
	$r = 6.67 \times 10^{-11} \times 6 \times 10^{24} / 3700^2$	C1	
	r = 2.92 x 10 ⁷ m	A1	
(c)(i)	Any mass ejected in the same direction as the satellite (WTTE)	B1	Idea of rocket motor pushing
			against direction of motion of
			satellite.
(c)(ii)	$v^2 r = constant OR v^2 = GM/r OR v = \sqrt{(6.67 \times 10^{-11} \times 6 \times 10^{24})/2 \times 10^7}$	C1	
	new v = $\sqrt{(3700^2 \text{ x} 2.94/2)}$ = 4500 m s ⁻¹ (4473)	A1	
	Total	10	

Question	Expected Answers	Marks	Additional guidance
3(a)(i)	(1 kWh is) the energy used/provided by a 1 kW device in 1 hour	B1	Allow 1 kWh = $60x60x1000$
			$= 3.6 \times 10^6 \text{ J}$
(a)(ii)	Energy used in kWh = (70/1000) x (7 x 24) = 11.8 kWh	C1	Any arithmetic error loses one
	Cost = 11.8 x 0.12 = £1.41 (or £1.4)	A1	mark
(b)(i)	use of E = mc $\Delta \theta$ e.g. E = 2 x 3800 x (18-3)	C1	
	$= 1.14 \times 10^5 $ J	A1	
(b)(ii)	Rate of energy loss = $1.14 \times 10^5 / 100 \times 60 = 19$ W	B1	Allow ecf for cand's (b)(i) value
(c)	1. 18 °C to 0 °C negative gradient line	B1	
	2. horizontal line on time axis	B1	
	3. 0°C to -18 °C line of steeper –ve gradient (judged by eye) than in	B1	
	1		
	Total	9	

|--|

Question	Expected Answers	Marks	Additional guidance
4(a)(i)	displacement is the distance (of the body) from an equilibrium	B1	Allow mean/rest/central/mid point
	position.		Not original, fixed point
		B1	This mark can only be gained if the
	amplitude is the maximum displacement.		word maximum/greatest/largest is
			spelled correctly. Allow distance
(a)(ii)	frequency is the number of oscillations/cycles per unit time/second	B1	Do not allow "swings"
	angular frequency is product of $2\pi x$ frequency OR 2π /period.	B1	Allow 2πf
(b)(i) 1	amplitude = $(18 - 13)/2 = 2.5$ m	B1	
(b)(i) 2	frequency = $1/(12.5 \times 3600) = (1/45000)$	C1	Accept any valid sub ⁿ of time for 1 st
	= 2.2(2) x 10 ⁻⁵ Hz	A1	mark
			Accept 0.08 h ⁻¹ OR 1.3x10 ⁻³ min ⁻¹ if unit
			is seen to replace Hz.
(b)(ii)	correct use of $v_{max} = 2\pi fA e.g. 2\pi x 2.22 x 10^{-5} x 2.5$	C1	Allow ecf from (b)(i)1 and 2 for full
	= 3.5 x 10^{−4} m s ^{−1} (3.46 or 3.49)	A1	marks:
			if A=5 is used $v_{max} = 6.98 \times 10^{-4}$ (6.9 to
			7)
			if A=18 is used $v_{max} = 2.5 \times 10^{-3}$
(b)(iii)	correct use of A(cos 2π ft): e.g. 2.5 cos [2π x 2.22 x 10 ⁻⁵ t]	C1	Allow 2.5 cos[2πt/45000]
	$(= 2.5 \cos (1.39 \times 10^{-4} \text{ xt}))$		Accept A(sin 2πft) throughout
	d = 15.5 + 2.5 cos $[2\pi \times 2.22 \times 10^{-5} \text{ t}]$ OR 15.5 + 2.5 cos (1.39×10^{-4})	A1	Allow ecf from (b)(i) and (b)(ii)
	(x t)		
	Total	11	

G484

Question	Expected answers	Mark	Additional guidance
5(a)(i)	smoke particles move in random/haphazard/zig-zag/jiggling/jerky manner	B1	random/haphazard/zig-zag/ jiggling/jerky must be spelled correctly
(a)(ii)	ANY 3 of the following: B1 + B1 +B1 movement of smoke particles caused by (being hit by) randomly moving air molecules smoke particles are continuously moving because the air molecules are continuously moving smoke particles are visible but air molecules are not hence air molecules must be (very) small . small movement of smoke particles is due to the large numbers of air molecules hitting from all sides	(B1) (B1) (B1) (B1) B3	An observation must be linked to an appropriate conclusion Condone reference to "water molecules" in place of air molecules. Condone air atoms/particles. Max 3
(b)	(absolute) temp ∞ mean <u>KINETIC ENERGY</u> $\frac{1}{2} m_o (v_o)^2 = \frac{1}{2} m_h (v_h)^2$ OR mv ² is constant OR v ² ∞ 1/m OR mean KE of oxygen = mean KE of hydrogen $v_o = \sqrt{(m_h / m_o) x1800} = \sqrt{\{(.002/.032) x1800\}} = 450 \text{ m s}^{-1}.$	C1 C1 A1	Allow (½)m <c²> = (3/2)kT</c²>
	Total	7	

G4	84
----	----

January	2011
---------	------

Question	Expected answer	Mark	Additional guidance
6(a)(i)	pressure is inversely proportional to volume (WTTE)	B1	Accept P \propto 1/V or PV = constant
	for a fixed mass of gas at constant temperature (WTTE)	B1	
(a)(ii) 1	hyperbolic (i.e.Boyles law) curve shape	B1	
	looks asymptotic to both axes i.e does not touch axes	B1	
(a)(ii) 2	straight line through origin OR would extrapolate back to the	B1	
	origin		
(b)(i)	correct sub ⁿ in pV = nRT \Rightarrow 5 x 10 ⁵ x 0.040 = nx8.31x <u>288</u>	C1	
	OR sub ⁿ into pV = NkT \Rightarrow 5 x 10 ⁵ x 0.040 = Nx1.38x10 ⁻²³ x288		Any incorrect Kelvin temp (eg 188)
			correctly used treat as an AE.
	(hence) n = 5 x 10 ⁵ x 0.040 / (8.31 x 288) = 8.4 (8.36) mol	A1	Allow 8.35
	(hence) N = 5.03 x 10^{24} molecules \Rightarrow 8.36 moles		Use of 15°C scores ZERO
(b)(ii)	from pV = nRT new n = 7.52 mol	C1	Allow ecf from b(i)
	moles lost is $8.36 - 7.52 = 0.84$ mol	C1	OR Pressure has dropped by 1/10
	= 2.3 (2.34) x 10 ⁻² kg (0.023)	A1	number of moles lost = 0.836 mol;
			Mass lost = $0.836 \times 0.028 = 2.3 \times 10^{-2}$
			kg
	Total	10	

GCE

Physics A

Advanced GCE

Unit G484: The Newtonian World

Mark Scheme for June 2011

Q1	Expected Answers	Marks	Additional guidance
(a)(i)	A body will remain at rest or continue to move with constant velocity unless	D1	Do not allow speed unless "speed in
	acted upon by a force (WTTE)	BI	a straight line is stated. Allow
() (!!)		D (
(a)(II)	The force which gives a mass of 1 kg an acceleration of 1 m s ²	B1	Allow 1N = 1 kg m s ²
(b)(i)	Use of $v = u + at$ OR $a = (v - u) / t \Rightarrow a = (55 - 0) / 2.2$	C1	
	$a = 25 (m s^{-2'})$	A1	
(b)(ii)	Use of $s = ut + \frac{1}{2} at^2$ e.g. $s = 0 + \frac{1}{2} \times 25 \times 2.2^2$	C1	Allow other valid solutions e.g. using
	s = 60.5 (m)	A1	$v^2 = u^2 + 2as$
(b)(iii)	$F = ma = 3.2 \times 10^4 \times 25 = 8.0 \times 10^5 (N)$	A1	Allow ecf from (b)(i)
()()		D 4	
(C)(I)	towards the centre of the circle.	B1	Do not allow a bare "perpendicular to
			The velocity
			as the acceleration "
(c)(ii)	use $F = mv^2/r$ e.g. $F = (3.2 \times 10^4 \times 120^2)/870$	C1	If 55 is used instead of 120 for the
(-)(-)	$F = 5.3 \times 10^5 (529655) (N)$	A1	velocity $F = 1.1 \times 10^5 \text{ ms}^{-1}$ and scores
			1 mark
(d)(i)	At top of the circle	M1	Allow "when the resultant force =
	when the weight provides/equals the required centripetal force	A1	weight"
(d)(ii)	realisation that acc = g (OR 9.81) AND (hence) $v^2/r = g$	M1	Accept 121.24 as this corresponds
	$\{v = \sqrt{(gr)} = \sqrt{(9.81 \times 1500)}\} \Rightarrow v = 120 \text{ (m s}^{-1}) (121.3)$	A1	to 9.8,
			do not allow 122.5 since this
			assumes $g = 10 \text{ ms}^{-2}$
	Total	14	

Q2	Expected Answers	Marks	Additional guidance
(a)(i)	Force/acceleration is proportional to displacement (from equilibrium	B1	Allow force/acceleration is in opposite
	position)		direction to the displacement.
			Allow acc $\propto x$, provided x is identified as the
		5.4	displacement for 1 st mark.
	(Resultant force) force/acceleration is (always) towards equilibrium	B1	2 nd mark only scored if –ve sign used and
	position (VVIIE, e.g. allow fixed point).		explained.
(a)(II)		B2	-1 for each error stop at zero
			Assume ✓ means true and X means false
	False;		Do not credit blank spaces
(h)	Faise		Allow where wood to measure initial and
(0)	measurements:	D1	Allow fuller used to measure initial and
	angle measured <u>with protractor</u> stated of shown on the diagram	Ы	
	ston-watch/ms timer/data-logger to measure time stated or shown on		explained.
	the diagram	B1	
	Conclusion: compare periods for different angles stated/implied		
	OR plot period against angle	B1	Allow table of results with correct column
			headings i.e. at least angle and period
	major difficulty:		
	angle of swing decreases during the timing of the swing		
	solution: e.g.	M1	
	measure time for $\frac{1}{4}$, $\frac{1}{2}$ or 1 swing accurately (using electronic		
	timer/datalogger)	A1	Do not allow 'time is short so measure nT
	OR		and divide by n to reduce (%) error'.(WTTE)
	use data logger with motion sensor to record many swings and analyse		
	how the period changes over time		
	video the motion with onscreen timer and analyse		
	Total	٩	
	i otai	3	

Q3	Expected Answers	Marks	Additional guidance
(a)	Force per unit mass (at a point in a gravitational field).	B1	Accept $g = F/m$ if F and m are identified
(b)(i)	Recognition that inverse square law needs to be verified: e.g. $g \propto 1/r^2$	B1	Do not accept a bare $g = GM/r^2$ unless G and M are stated as constants or following calculations shows this.
	hence $gr^2 = \text{constant} \Rightarrow 9.8 \times 6400^2 = 4.0 \times 10^8 \text{ (or } 4 \times 10^{14} \text{)}$ AND 2.7 x 10 ⁻³ x (3.8 x 10 ⁵) ² = 3.9 x 10 ⁸ (or 3.9 x 10 ¹⁴) (n.b values in brackets correspond to radius in metres)	B1	They must use values in table and do both calculations for this mark Allow other valid approaches e.g. g ratio compared to $1/r^2$ ratio (3630 and
	Any appropriate comment consistent with the calculations e.g. values are close enough (to verify the relationship).	B1	3530) OR (2.75 x 10 ⁻⁴ , 2.84 x 10 ⁻⁴ ,)
(b)(ii)	$(mg = GmM / r^2 \Rightarrow M = gr^2 / G)$		(this formula is given on data sheet)
	$M = 9.81 \times (6.4 \times 10^6)^2 / 6.67 \times 10^{-11}$	C1	Correct substitution into formula
	$M = 6.024 \times 10^{24} \text{ kg}$	A1	Allow 6.018 x 10^{24} this is for $g = 9.8$ and allow any value between 6.0 x 10^{24} and 6.03 x 10^{24} but not 6x 10^{24} Also allow data for the moon to be used i.e $M_{\rm E} = 2.7 \text{x} 10^{-3} \text{ x } 3.8 \text{ x } 10^8 / 6.67 \text{ x } 10^{-11} =$ 5.846 x 10^{24} kg \approx 6 x 10^{24} kg
(b)(iii)	volume = $(4/3)\pi r^3 = (4/3)\pi (6.4 \times 10^6)^3 (= 1.10 \times 10^{21} \text{ m}^3)$	C1	mark for correct substitution e.g. 6.4×10^6 (in m) used and not 6.4×10^3 (km)
	$\rho = M/V = 6.0 \times 10^{24} / 1.10 \times 10^{21} = 5500 (5464)(\text{kg m}^{-3})$	A1	allow ecf from b(ii) for cand's value of M but no ecf for wrong volume <u>formula</u> If $r = 6.4 \times 10^3$ is used V = 1.1 $\times 10^{12} \Rightarrow$
			$\rho = 5.5 \times 10^{12}$ and scores 1 mark
	Total	8	

Q4	Expected Answers	Mark	Additional guidance
(a)(i)	Latent heat of fusion.	B1	QWC fusion spelled correctly
			ignore any reference to specific.
(a)(ii)	Latent heat of vaporisation.	B1	QWC Vaporisation spelled correctly.
			Accept vaporization
			but not vapourisation.
(b)(i)	$E = mc\Delta\theta$ used correctly e.g. 0.8 x 4200 x 82	C1	0.8 x 4200 x (82+273) scores zero
	$= 2.8 \times 10^{5} (J) (275520)$	A1	
(b)(ii)	Any two from:	B1	Do not allow "some heat lost" i.e. they
	Some heat/energy used to heat kettle	B1	must state where/how
	Some heat/energy lost to surroundings/air/environment.		Do not allow "kettle if not 100%
	Some heat/energy used to boil water before kettle switches off		efficient".
			Do not allow "energy lost as
			sound/light"
(b)(iii)	$1 \text{ kWh} = 1000 \text{ x } 3600 = 3.6 \text{ x } 10^{\circ} \text{ J}$	C1	Allow 1 mark for energy lost per year =
	Wastage per year = $(2.8 \times 10^{5} \times 365) / 3.6 \times 10^{5} = 28 \text{ kWh}$	A1	1.02 x 10 ⁸ <u>Joules</u>
	(27.9)		Allow ecf from (b)(i)
	1	Fotal 8	

G484

June	201	1
------	-----	---

Q5	Expected answers	Mark	Additional guidance
(a)(i)	A collision with no change / loss of kinetic energy.	B1	Allow coeff't of restitution = 1
(a)(ii)	Any 3 from		
	Volume of <u>particles</u> negligible compared to volume of vessel OR		do not allow a bare "negligible volume
	molecules much smaller than distance between them		of molecules "
	No intermolecular forces acting (other than during collisions)		Do not allow "colligions botwoon
	OR molecules only have kinetic energy (and no PE)		molecules are elastic" because this is
	or moloculos only have know only g (and not E)	B1	aiven in the question.
	Particles travel in straight lines/at uniform velocity between collisions OR	B1	g
	force of gravity on molecules is negligible	B1	do not allow a bare "negligible time of
			collisions"
	time of collisions much smaller than time between collisions		
			Do not allow a bare "rapid random
	gas consists of a large number of molecules moving randomly (both		motion"
(h)(i)	A normalized for the mark)	<u> </u>	
(I)(I)	$\Delta p = 11V - 111U$ = 4.8 x 10 ⁻²⁶ [500 - (-500)] = 4.8 x 10 ⁻²³ kg m s ⁻¹		2.4×10^{-23} scores zero
(b)(ii)	(time between collisions - 0.4 /500 s) Number of collisions/sec -		
(0)(1)	(1116 between considers = 0.47600 s) . Number of considers/sec. = $500/0.4 = 1250$	A1	Correct answer only
(b)(iii)	(Mean) force = $\Delta p/t$ OR Force = rate of change of momentum	C1	Allow ecf from (b)(i) and (b)(ii)
	OR Impulse = change in momentum		e.g. if 2500 is used from (b)(ii)
		A1	$F = 2500x4.8x10^{-23} = 1.2x10^{-19} N$ and
	Force = $1250 \times 4.8 \times 10^{-23} / 1 = 6.0 \times 10^{-20} N$		this scores 2 marks
(b)(iv)	Same value as candidate's (b)(iii)	B1	
	due to Newton's third law OR this force acts in opposite direction		OR –ve sign shown
(c)(i)	$3 \times 6 \times 10^{23} = \underline{1.8 \times 10^{24}}$	B1	1.806 x 10 ²⁴ if 6.02 is used
(c)(ii)	(very) large number of particles that are moving randomly means that at	B1	Allow no gravitational forces and
	any instant the number of collisions on each face will be the same		hence uniform density
(a)(:::)	(WIIE)	D4	
(C)(III)	(mean) KE/speed of molecules increases	BI	Also allow greater change of
	increased rate of collisions with wall OK harder collisions with wall	ы	Not just "more collisions"
	Tatal	11	
	Total	14	

Mark Scheme

Q6	Expected answers	Mark	Additional guidance
(a)(i)	Straight line (judged by eye)with positive slope AND passing through the origin	B1	correct answer only
(a)(ii)	8.31 (J mol ⁻¹ K ⁻¹)	B1	Allow R and molar gas constant, but do not allow pV/T OR nR
(b)(i)	-40 °C = 233 K, AND 250 °C = 523 K	M1	No marks scored if 40° C and/or
	Use of $V_1/T_1 = V_2/T_2$ 2.4 x 10 ⁻² / 233 = V ₂ / 523	C1	250°C are used
	$V_2 = 0.053(8) \text{ (m}^3)$	A1	Accept other correct versions.
(b)(ii)	Use of $p = nRT/V = 1.5 \times 8.31 \times 233 / 2.4 \times 10^{-2}$	C1	Allow T= 523 and V= 0.053
	$= 1.21 \times 10^5$ (Pa)	A1	hence $p = 1.2 \times 10^5$
			Allow ecf from (b)(i)
	Total	7	

Physics A

Advanced GCE Unit **G484:** The Newtonian World

Mark Scheme for January 2012

January 2012

Annotations

Annotation	Meaning
1100	Benefit of doubt given
CON	Contradiction
×	Incorrect response
	Error carried forward
	Follow through
II. AND	Not answered question
FECO	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
	Rounding error
	Error in number of significant figures
>	Correct response
	Arithmetic error
2	Wrong physics or equation

Mark Scheme

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The use of ticks to indicate where marks are awarded is strongly advised in all questions but the following questions **must always** be annotated with ticks. Q3(a)(i), Q4(a), Q5(a)(ii), Q5(a)(iii)

January 2012

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow answers to 2 or more significant figures.

(Significant figures are rigorously assessed in the practical skills.)

Question		on	Answer	Marks	Guidance
1	(a)	(i)	(linear momentum =) mass x <u>velocity</u>	B1	Allow: momentum = $m v$ where m is mass and v is velocity
					Not: mass x speed
		(ii)	Any two from: momentum / vector has magnitude and direction velocity is a vector A product of a scalar and vector is a vector	B1 x 2	
	(b)	(i)1	$a = \Delta v / \Delta t = 7.5 / 0.28$		
			$a = 27 \text{ (m s}^{-2}\text{)}$	A1	Ignore sign
		2	F = ma		Possible ecf from b(i) for acceleration
			<i>F</i> = 850 x 27	C1	
			$= 2.3 \times 10^4 $ (N)	A1	
		(ii)	$E = \frac{1}{2}mv^2$		
			$0.45 \times 10^6 = \frac{1}{2} \times 850 \times v^2$	C1	Mark is for correct substitution
			$v = \sqrt{(2 \times 0.45 \times 10^6 / 850)}$		
			$v = 33 \text{ (m s}^{-1})$	A1	Note: Possible POT error
	(c)		$m_1 u = (m_1 + m_2)v$		
			850 x 7.5 = (850 + 1200) <i>v</i>	C1	Mark is for correct substitution
			<i>v</i> = 850 x 7.5 /2050		
			$v = 3.1 \text{ (m s}^{-1}\text{)}$	A1	
			Total	10	

Mark Scheme

G	Question		Answer	Marks	Guidance
2	(a)	(i)	amplitude = $0.4(0)$ (m) and period = $5.(0)$ (s)	B1	Note: <u>Both</u> values are required.
					Allow 1 sf values
		(ii)	$\omega = (2\pi f) = 2\pi / \tau$		Possible ecf from a(i) for period
			$\omega = 2\pi / 5.0 = (2\pi \times 0.2)$	C1	Mark is for correct substitution
			$\omega = 1.3 \text{ (rad s}^{-1}\text{)}$	A1	
	(b)	(i)	V clearly marked at any point where graph crosses time axis	B1	
	(6)	(i) (ii)	A clearly marked at any point where graph crosses time axis	B1	
		(iii)	P clearly marked at any point where graph crosses time axis	B1	
	(c)	(i)	Selecting from data sheet $a = -(2\pi f)^2 x$	C1	Allow: $a = (-) \omega^2 x$
					Note: Ignore sign of a
			$a_{\text{max}} = (-)(2\pi \times 2.4 \times 10^3)^2 \times 1.8 \times 10^{-3}$	C1	
			$a_{\rm max} = 4.1 \times 10^5 \ ({\rm m \ s}^{-2})$	A1	Allow : 2 marks for 4.1 x 10^n , n \neq 5 [POT error]
		(ii)	Work done = mean force x distance moved		
			For $\frac{1}{4}$ oscillation distance moved = 1.8 mm,		
			Work done = $0.25 \times 1.8 \times 10^{-3}$ (= 4.5×10^{-4} J)	C1	
			Time taken $\Delta t = \frac{1}{4}$ T = $\frac{1}{4}$ (1/2.4x10 ³) = 1.04 x 10 ⁻⁴	C1	
			Power = work done / Δt = 0.25 x 1.8 x 10 ⁻³ / 1.04 x 10 ⁻⁴ = 4.3 W		Allow: other correct values of distance moved and compatible time taken. Eg 7.2 (mm) and 4.17×10^{-4} (s) for 1 complete oscillation
			Power = 4.3 (W)	A1	
			Total	12	

PMT

Question		on	Answer	Marks	Guidance
3	(a)	(i)	geostationary or synchronous	B1	Must use tick on energy on Oceanie to show if the
			The term geostationary or synchronous to be included and spelled correctly to gain the B1 mark		Must use tick or cross on Scoris to show if the mark is awarded
		(ii)	So that they stay: above the same point (at all times)	B1	Allow: travel at same (angular) speed / period and
			at same point in the sky		same direction as the Earth
		(iii)	<u>Dish</u> can be fixed to point in one (specific) direction/ <u>Dish</u> does not have to track the satellite (across the sky)	B1	Allow: Receiver / aerial for dish
		(iv)	Select from data sheet $T^2 = (4\pi^2/GM)r^3$		Allow : Full credit if candidate assumes $r = 4 \times 10^7$
			$r^3 = T^2 \left(\frac{GM}{4\pi^2} \right)$	C1	and shows T is approx 1 day.
			$t^{3} = (8.64 \times 10^{4})^{2} (6.67 \times 10^{-11} \times 6.0 \times 10^{24} / 4\pi^{2})$ any subject (= 7.56 X 10 ²²)	C1	$1 \text{ day} = 8.64 \times 10^4 \text{ s}$
					$G = 6.67 \text{ x } 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
			$r = 4.2 \text{ x10}^{\prime} \text{ (m)}$	A1	
			$r \approx 4 \times 10^{7}$ (m)	A0	Mark for radius can only be awarded if suitable working is shown
	(b)	(i)	The cube of the planets distance (from the Sun) divided by the square of the	B1	Allow: radius for distance.,
			(orbital) period is the same (for all planets) (WTTE)		Allow: $T^2 \propto r^3$ or r^3 / T^2 = constant provided <i>T</i> and <i>r</i> are <u>identified</u>
		(ii)	$(27.3)^2$		
			ratio ³ = $\left(\frac{1}{1}\right)$	C1	Allow: 1 mark for correct value of distance of Moon from Earth's centre 3.8 x 10 ⁸ (m)
			ratio = $(27.3)^{2/3}$		
			ratio = 9.1	A1	Note : Full credit for 4×10^7 (m) used from (a)(iv)
			Total	9	

Question		on	Answer	Marks	Guidance
4	(a)		latent heat of fusion	B1	Allow: Specific latent heat of fusion
					Allow: (Specific) latent energy of fusion
			✓The term fusion to be included and spelled correctly to gain the B1 mark		Must use tick or cross on Scoris to show if the mark is awarded
	(b)	(i)	Total / sum of randomly (distributed) kinetic energy and potential energy of molecules/atoms	B2	Allow: 1 mark only if molecules / atoms and/or randomly are omitted
		(ii)	Potential energy of the molecules increases	B1	
			Kinetic energy of molecules is the same for water and steam (since the	B1	Allow : work is done to break the bonds (between
			temperature is the same) / <u>work</u> is <u>done</u> in moving molecules apart		molecules)
	(c)	(i)	Mass of air = volume x density = 15 x 1.2 (= 18 kg)	C1	
			Heat energy transferred to air in one hour $Q = 12 \times 60 \times 60 = 43200 \text{ J}$		
			$\Delta \theta = Q / mc = 12 \times 60 \times 60 / 18 \times 990$	C1	Allow: any subject
					Treat a transcription error as one AE.
			Temperature rise in one hour $= 2.4 \text{ K}$		
				A1	Allow: 2 K as question asks for an estimate
		(ii)	Any two from		
			Heat lost to structure of greenhouse / contents		
			Heat lost through glass / from the greenhouse / surroundings		
			Average rate of loss of heat reduces (as temperature falls)	B1 x 2	
			Total	10	

Mark Scheme

C	Question		Answer	Marks	Guidance
5	(a)	(i)	Collision in which kinetic energy is conserved	B1	Allow: no ke lost (wtte)
		(ii)	Any <u>four</u> from		Symbols must be defined in formulae
			<u>Many</u> molecules collide with the walls		
			 A change in momentum occurs when molecule(s) collide with (and rebound from) the walls of container 		
			Force is rate of change of momentum		
			 The force exerted by the molecule(s) on wall is equal to force exerted by the wall on the molecule(s) (by Newton's third law) 		
			 pressure (on wall) = (total) force (on wall) / area (of wall) 	B1 x 4	
		(iii)	Any <u>two</u> from		
			 Molecules move faster/have greater <u>kinetic</u> energy (at higher temperature) 		
			 There is an increased <u>rate</u> of collision / more collisions occur <u>per</u> <u>second</u> / collisions occur <u>more often</u> 	B1 x 2	Not : greater force Not : harder collisions
			Each collision involves a greater change in momentum		
	(b)	(i)	$P_1 V_1 / T_1 = P_2 V_2 / T_2$	C1	
			with T stated in Kelvin or clearly shown in subsequent working		
			$P_2 = 105 \times 5 \times 10^3 \times (273 - 30) / (273 + 20) \times 1.2 \times 10^4$	C1	Temperatures must be in kelvin to score this mark.
			$P_2 = 36$ (kPa)	A1	Allow : consistent working in pascal
		(ii)	Risk that balloon will burst (with further increase in volume)	B1	Allow: pop / explode
			Total	11	

Mark Scheme

C	luesti	on	Answer	Marks	Guidance
6	(a)		Mass of one hydrogen molecule = $2.02 \times 10^{-3} / 6.02 \times 10^{23}$	C1	
			Mass = 3.4×10^{-27} (kg)	A1	
	(b)		Mean k.e = $3kT/2$		
			Mean ke = 3/2 x 1.38 x 10 ⁻²³ x 1100	B1	
			Mean ke = 2.3×10^{-20} (J)	B1	
			Mean ke ≈ 2 x 10 ⁻²⁰ (J)	A0	
	(c)		$E_k = \frac{1}{2} m v^2$ 2.3 x 10 ⁻²⁰ = $\frac{1}{2}$ x 6.6 x 10 ⁻²⁷ v^2		Note: Full credit to be given for the use of 2×10^{-20} (J) from (b) giving $v = 2.5 \times 10^3$ (ms ⁻¹)
			$v^2 = (2 \times 2.3 \times 10^{-20} / 6.6 \times 10^{-27})$ $v = (2 \times 2.3 \times 10^{-20} / 6.6 \times 10^{-27})^{1/2}$ $v = 2.6 \times 10^3 \text{ (m s}^{-1})$	M1 A1	Note: If 3.36×10^{-27} is used from (a) (hydrogen molecules) then speed = 3.68×10^3 m s ⁻¹ and scores max 1 mark
	(d)		Helium atoms have a range of speeds / kinetic energies Hence some atoms have a velocity greater than 11 km s ⁻¹ / escape velocity	M1 A1	Accept equivalent wording or suitable diagram
			Total	8	

Physics A

Advanced GCE Unit **G484:** The Newtonian World

Mark Scheme for June 2012

June 2012

Annotations

Annotation	Meaning
1115	Benefit of doubt given
(HON)	Contradiction
×	Incorrect response
□_{ () _	Error carried forward
	Follow through
NAXA]	Not answered question
	Benefit of doubt not given
i di si di	Power of 10 error
	Omission mark
	Rounding error
	Error in number of significant figures
V	Correct response
	Arithmetic error
2	Wrong physics or equation

June 2012

The abbreviations, annotations and conventions used in the detailed mark scheme are:

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

Q2a, Q2bii, Q3bi, Q5a should be full annotated on all scripts. Ticks are preferred on all questions where credit is given.

Note about significant figures:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance Column.

Q	uesti	on	Answer	Marks	Guidance
1	(a)	(i)	Force changes the momentum of / accelerates / decelerates the object	B1	Allow: Change of speed / velocity / direction of motion
	(b)	(i)	Force x time for which the force acts / duration of collision	B1	Allow: $F \Delta t$ with both symbols defined Not: change of momentum
		(ii)	Area under graph = impulse OR Area = change in momentum	B1	Allow: Area under graph = mv OR = $m(v-u)$
			final velocity = Area under graph / mass	B1	Note: v must be the subject to score this mark
	(c)	(i)	mean force on ball x time = increase in momentum of ball mean force = $\frac{0.058 \times 52}{4.2 \times 10^{-3}}$	C1	Mark for correct substitution
			= 720 (N)	A1	Note: Answer to 3 sf is 718 (N) Bald 720 (N) scores 2 marks
		(ii)	momentum change of racket = momentum (change) of ball		
			$M(38 - 32) = 0.058 \times 52$ $M = \frac{0.058 \times 52}{6}$	C1	Allow: use of mean force from c(i) and time 4.2ms . Possible ECF from c(i)
			= 0.50 (kg)	A1	Note: Answer to 3 sf is 0.503 (kg) Allow: 0.5 (kg)
		(iii)	The person / hand / arm holding the racket also changes momentum (AW)	B1	Not: references to angles or initial speed of ball
			Total	9	

Q	uesti	on	Answer	Marks	Guidance
2	(a)		acceleration proportional to <u>displacement</u> (from the equilibrium position)	B1	 displacement must be spelled correctly to score the mark. Allow: acceleration proportional to distance from equilibrium position with equilibrium spelled correctly for first B1
			and is always acting towards the equilibrium position / the mid-point of the motion (AW)	B1	Allow: 'acceleration is in the opposite direction to displacement' for the second B1 mark Use tick or cross on Scoris
	(b)	(i)	$v_{\text{max}} = 2\pi f A \qquad f = 1/0.08 = 12.5$ $v_{\text{max}} = 2\pi \left(\frac{1}{0.080}\right) \times 1.2 \times 10^{-3} \left(= 2\pi \times 12.5 \times 1.2 \times 10^{-3}\right)$	C1	$\begin{cases} \text{If A} = 0.6 \text{ mm used} \\ v_{\text{max}} = 2\pi \left(\frac{1}{0.080}\right) \times 0.6 \times 10^{-3} (\checkmark) \\ v_{\text{max}} = 4.7 \times 10^{-2} \text{ (m s}^{-1}) (\checkmark) \end{cases}$
			$v_{\rm max} = 9.4 \times 10^{-2} \text{ (m s^{-1})}$	A1	Note: Answer to 3 sf is 9.42 x 10 ⁻² (m s ⁻¹) Allow: 1 mark for 94(.2) (m s ⁻¹) not converting mm to m
		(ii)	This occurs at the highest point (top) of the oscillations When acceleration of plate equals/exceeds free fall acceleration /g/ 9.81	B1 B1	
			$g = (2\pi f)^2 A_0$ hence $A_0 = \frac{9.81}{\left(2\pi \times \frac{1}{0.080}\right)^2}$	C1	Allow: equation with any subject for this mark
			$A_0 = 1.6 \times 10^{-3} \text{ (m)}$	A1	Note: Answer to 3 sf is 1.59 x 10 ⁻³ (m)
	(c)	(i)	Resonance Driving / drum frequency matches natural frequency (of casing) (AW)	B1 B1	
		(ii)	Graph with peak amplitude less than original peak amplitude Similar shape curve with peak at the same or lower frequency than given curve Curve is lower than given curve at all frequencies	M0 A1 A1	Must see this before subsequent marks can be scored.
			Total	12	

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(i)	Arrow (labelled F) directed towards centre of circle	B1	Allow: arrow drawn parallel to the string
		(ii)	Resultant force (F) acts at 90° to motion / velocity of bung	B1	Allow: No component of F acts in the
					direction of motion (B1)
			so no work done is done by F (hence no change in speed)	B1	hence there is no acceleration in the
					direction of motion (AW) (B1)
	(b)	(i)	Student tries to rotate bung at constant radius / tries to keep reference mark	B1	Not: bald 'constant radius'
			at end of tube (AW)		
			Force F is calculated using $F = Mg$. where M is mass of slotted masses	B1	Not : F = weight
				D1	Net: 'take time for 1 revolution'
			Measure time t for n revolutions of the bung	Ы	
			(hence calculate T for 1 revolution).		
			Moasuro radius r whon stationany	B1	
			Measure radius / when <u>stationary</u>		
			Calculate v using $2\pi r n/t$ (or $2\pi r/T$)	D1	
				Ы	
		(ii)	1 Straight line of positive gradient passing through the origin	B1	
			2 $F = \frac{m}{2} v^2$ hence gradient $= \frac{m}{2}$	B1	Cannot award this mark if graph is curved
			r r		
			Mass = gradient (of graph) x radius (of orbit)	B1	Can score this mark if graph is curved
			Total	11	

C	Questi	on	Answer	Marks	Guidance
4	(a)	(i)	Energy required to raise the temperature of a unit mass of a substance by unit temperature rise.	B1	Allow: $c = \frac{Q}{m\Delta\theta}$ with all symbols defined.
		(ii)	LH of fusion is energy needed to change (a substance) from <u>solid to liquid</u> LH of vaporisation is energy needed to change (a substance) from <u>liquid to</u> <u>gas/vapour</u>	B1	Allow: a single reference to energy (either statement acceptable)
	(b)	(i)	A to B: KE of molecules <u>increases</u> <u>AND</u> PE of molecules (small) <u>increases</u> B to C: KE of molecules remain constant <u>AND</u> PE of molecules <u>increases</u>	B1 B1	
		(ii)	C _{solid} is less than C _{liquid}	B1	
			Correct reason Eg gradient for solid is greater than gradient for liquid AND gradient is inversely proportional to specific heat capacity (AW}	B1	
	(c)	(i)	$\frac{\ln \text{ one second}}{\text{volume flowing through}} = (3.6 \times 10^{-3} / 60) = 6.0 \times 10^{-5} \\ \text{mass flowing through} = 6.0 \times 10^{-5} \times 1000 = (6.0 \times 10^{-2}) \\ \text{Energy gained by water } E = mc \Delta\theta = 0.060 \times 4200 \times (36.7 - 17.4) \\ (= 4864) \\ \text{Power of heater} = E / t = 4864 / 1 \\ \text{Power of heater} = 4.9 \times 10^{3} \\ \approx 5 \text{ kW} \\ \end{array}$	C1 C1 C1 A1 A0	AlternativeIn one minutevolume flowing through = 3.6×10^{-3} mass flowing through = 3.6×10^{-3} Energy gained $E = mc \Delta \theta = 3.6 \times 4200 \times (36.7 - 17.4)$ (C1) $(= 2.92 \times 10^5 \text{ J})$ PowerPower $= E / t = 2.92 \times 10^5 / 60$ (C1)Power of heater = 4.9×10^3 $\approx 5 \text{ kW}$
		(ii)	EITHER rate of flow of water changes because water pressure changes OR Inlet temperature changes because ambient temperature changes	M1 A1	
			Total	12	

G	uesti	on	Answer	Marks	Guidance
5	(a)		Gas molecules move in random / erratic / haphazard motion (AW) :	B1	Use tick or cross on Scoris random / erratic / haphazard must be spelled correctly to score the mark.
	(b)	(i)	constant temperature	B1	
		(ii)	$P_1V_1 = P_2V_2$ 350 x 120 x (A) = P_2 x 55 x (A) 350×120	C1	
			$P_2 = \frac{1}{55}$ = 760 (kPa)	A1	Note: Answer to 3 sf is 764 (kPa) Note : 7.6 x 10 ⁵ (kPa) scores 1 mark
		(iii)	When a molecule collides with the (moving) piston it rebounds with higher speed / ke / momentum	B1	Must refer to collisions with piston or rebounds from piston not collisions within gas molecules.
			(Mean) kinetic energy of molecules is proportional / ${\bf \propto}$ to (Kelvin) temperature	B1	Allow: $E_k = 3kT/2$ without definition of terms.
			Total	6	

Q	uesti	on	Answer	Marks	Guidance
6	(a)	(i)	Force between two (point) masses is proportional to the product of masses	B1	
			and inversely proportional to the square of the distance between them	B1	Not: radius
					Allow: $F = GMm/r^2$ B1
				D (All symbols defined B1
		(II)	Force per (unit) mass	B1	Allow: $g = F/m$ with symbols defined
	(b)	(i)	$v = \frac{2\pi R}{T}$		
			$v = \frac{2\pi \times 1.2 \times 10^9}{16 \times 86400}$	C1	
			$v = 5.5 \times 10^3$ (ms ⁻¹)	A1	Note: Answer to 3 sf is 5.45 x 10 ³ Allow: 1 mark for 4.7 x 10 ⁸ not converting days to s Allow: 1 mark for 5.5 not converting km to m
		(ii)	n^2 CM m		
		(11)	$m_T \frac{v}{r} = \frac{GM_s m_T}{r^2}$	C1	Allow: alternative method using Kepler's third law
			$M_s = \frac{v^2 r}{G}$		
			$M_{\rm s} = \frac{(5.45 \times 10^3)^2 \times 1.2 \times 10^9}{10^9}$	C1	Possible ECF from b(i)
			6.67×10^{-11}		Note : An answer of 5.3×10^{20} (or 5.4×10^{20})
			$M = 5.3 \times 10^{26} \text{ (kg)}$	A1	marks since this is a ' show' question.
					Note: Use of 5.5 x 10 ³ gives 5.4 x 10 ²⁶ (kg)
	(C)		Reference to $T^2 = (4\pi^2 / GM) r^3$ OR $T^2 \propto r^3$	B1	
			3		
			$\frac{T_R}{T_T} = \sqrt{\frac{r_R^3}{r_T^3}} \text{OR} \frac{T_R}{T_T} = \left(\frac{r_R}{r_T}\right)^{\frac{3}{2}}$	B1	Not: $\left(\frac{T_R}{T_T}\right)^2 = \left(\frac{r_R}{r_T}\right)^3$
			Total	10	

Physics A

Advanced GCE Unit **G484:** The Newtonian World

Mark Scheme for January 2013

Annotations

Annotation	Meaning
1111	Benefit of doubt given
(H-IN	Contradiction
×	Incorrect response
	Error carried forward
177	Follow through
NAC	Not answered question
2.000	Benefit of doubt not given
1251	Power of 10 error
	Omission mark
	Rounding error
	Error in number of significant figures
✓	Correct response
	Arithmetic error
?	Wrong physics or equation

January 2013

The abbreviations, annotations and conventions used in the detailed Mark Scheme are:

Annotation	Meaning
/	Alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

Note about significant figures:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance Column.

CATEGORISATION OF MARKS

The mark scheme categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Q	uesti	on	Answer	Marks	Guidance
1	1 (a)		Rate of change of momentum (of a body) is proportional /		Allow: Force = change in momentum / time (taken)
			equal to the (net) force (acting on it)	M1	Note: momentum must be spelled correctly to score the mark.
			and takes place in the direction of that force.	A1	Allow this mark if the M1 mark is lost for spelling error
	(b)	(i)	$(3 \times 5) - (7 \times 2) = 10v$	C1	Signs must be correct for the mark to be scored
			v = (15 - 14)/10		
			= 0.10 (m s ⁻¹)	M1	Allow 1 sf answer
			to the right (AW)	A1	Not forwards/towards ${\bf B}$ but allow correct arrow \rightarrow or east
		(ii)	Impulse = $3(0.1 - 5)$		Allow: ecf from (b)(i)
			(= - 14.7) = (-)15 (Ns)	M1	Ignore sign
			to the left (AW)	A1	Not backwards/towards A but allow correct arrow ← or west
		(iii)	(Newton's 3 rd law says)		Allow: use of minus sign to indicate 'opposite'
			Force on B (due to A) is equal and opposite to force on A (due to B)	M1	Not: Action and reaction are equal and opposite.
			time (of contact) / t is same for both AND Impulse = Ft	A1	
			impulse on A is equal and opposite to impulse on B	A0	
			Total	9	
			lotai	Ŭ	

G484

Q	uesti	on	Ans	wer	Marks	Guidance
2	(a)	(i)	$g = \frac{v^2}{r}$ or $v^2 = \frac{GM}{r}$		C1	Correct formula in any form Allow: use of <i>a</i> for <i>g</i>
			$V = \sqrt{gr}$			
			$\mathbf{v} = \sqrt{7.7 \times 7.2 \times 10^6}$		C1	Mark is for substitution (Note Mass of Earth is 6.0×10^{24} kg) Any use of r = 800 km is WP scores 0/3
			v = 7400 (m s ⁻¹)		A1	Note: Answer to 3 sf is 7450 (m s ⁻¹)
		(ii)	$T = \frac{2\pi r}{v}$	$T^2 = \frac{4\pi^2 r^3}{GM}$		Allow: possible ecf for <i>v</i> from (a)(i)
			$T = \frac{2\pi \times 7.2 \times 10^6}{7450}$	$T^{2} = \frac{4\pi^{2} (7.2 \times 10^{6})^{3}}{6.67 \times 10^{-11} \times 6 \times 10^{24}}$	C1	No ecf for use of $r = 6.4 \times 10^6$ again or use of $r = 800$ km Both score 0/2
			= 6100 (s)	T = 6100 (s)	A1	Note: Answer to 3 sf using $v = 7400$ is 6110 (s) Answer to 3 sf using $v = 7450$ is 6070 (s)
	(b)	(i)	Number of orbits = $\frac{24 \times 3600}{6080}$ ≈ 14	(= 14.2)	B1	Allow any correct method Allow ora No ecf from a(ii)
		(ii)	Circumference = $2\pi r$		C1	Allow:
			equatorial circumference = 2 width of photograph	$\frac{2\pi \times 6400}{3000} = 13.4$	C1	Circumference = $2\pi r$ (C1) length of equator covered per orbit = $2\pi \times 6.4 \times 10^3/14$ (C1) (= 2872)
			(But each orbit crosses the eq number of orbits = 6.7	uator twice hence)	A1	(But each orbit crosses the equator twice hence) min width to be photographed = $\frac{1}{2} \times 2872$ = 1400 km (A1)
			This is fewer than 14 orbits so be photographed (AW)	whole of Earth's surface can	A0	< 3000 km so all of Earth's surface can be photographed in one day (A0)

Mark S	cheme
--------	-------

Question		Answer	Marks	Guidance
(c)		suitable example: eg weather / spy / surveying / mapping / GPS	B1	Ignore TV / radio / communications
		Total	10	

G484	
------	--

Que	estior	า	Answer	Marks	Guidance
3	(a)		Force is proportional to the product of the masses and inversely proportional to the square of their separation (AW)	B1	Allow: $F = \frac{GmM}{r^2}$ with all symbols defined.
	(b)	(i)	$mg = \frac{GmM_{J}}{r^{2}}$ $M_{J} \left(= \frac{g r^{2}}{G} \right) = \frac{7.5 \times (1.3 \times 10^{8})^{2}}{6.67 \times 10^{-11}}$	C1 C1	Allow: formula with m cancelled Allow: use of $T^2 = \frac{4\pi^2 r^3}{GM_J} \Rightarrow M_J = \frac{4\pi^2 (1.3 \times 10^8)^3}{6.67 \times 10^{-11} \times (7.2 \times 60^2)^2}$ Note: mark is for substitution with any subject
			$M_J = 1.9 \times 10^{27}$ (kg)	A1	
		(ii)	$\frac{g_M}{g_A} = \frac{r_A^2}{r_M^2}$ $\frac{g_M}{7.5} = \frac{\left(1.3 \times 10^8\right)^2}{\left(2.4 \times 10^{10}\right)^2}$ $g_M = 2.2 \times 10^{-4} (N \text{ kg}^{-1})$	C1 A1	Allow: use of $g = \frac{GM_J}{r^2}$ with possible ecf for M_J from (b)(i) $g_M = \frac{(6.67 \times 10^{-11}) \times (1.9 \times 10^{27})}{(2.4 \times 10^{10})^2}$ Note: mark is for substitution $g_M = 2.2 \times 10^{-4}$ (N kg ⁻¹)
		(iii)	$T^{2} \propto r^{3} \text{OR} \qquad T^{2}/r^{3} = \text{constant} \ (= 4\pi^{2}/GM_{J})$ $\frac{T_{M}^{2}}{7.2^{2}} = \frac{(2.4 \times 10^{10})^{3}}{(1.3 \times 10^{8})^{3}}$ $T_{M} = 1.8 \text{ x}10^{4} \text{ (hours)}$	C1 C1 A1	Allow: possible ecf for M_J from b(i) Allow: use of other correct formulae Note: mark is for substitution Note using times in seconds gives $T_M = 6.49 \times 10^7$ (s) scores 2 marks
			Total	9	

Q	uesti	on	Answer	Marks	Guidance
4	(a)		Obtain a set of readings for: mass <i>m</i> , time period AND calculate frequency using $\underline{f} = \underline{1/T}$. Plot graphs of <i>f</i> against $1/m$ AND <i>f</i> against $1/\sqrt{m}$ The graph which is a straight line through the origin provides the correct relationship Reference to one method of improving reliability eg counting more than 5 oscillations to find <i>T</i> or <i>f</i> taking repeat measurements of <i>T</i> or <i>f</i> (and average values) time oscillations from equilibrium position	B1 B1 B1 B1	Not number of oscillations in a set time Allow: product method using two or more points (B1) Select the relation which gives a constant product (B1) Allow: plot ln <i>f</i> against ln <i>m</i> (B1) gradient= -1 then $f \propto 1/m$ or gradient= -0.5 then $f \propto 1/\sqrt{m}$ (B1)
	(b)	(i)	$v_{\text{max}} = 2 \pi f A = 2 \pi \left(\frac{1}{1.2}\right) \times 36 \times 10^{-3}$ $v_{\text{max}} = \frac{3\pi}{50} \qquad (= 0.188)$ $KE_{\text{max}} = \frac{1}{2} \times 0.4 \times \left(\frac{3\pi}{50}\right)^{2}$ $KE_{\text{max}} = 7.1 \times 10^{-3} (J)$	C1 C1 A1	Note: mark is for substitution
		(ii)	$a_{\text{max}} = (2 \pi f)^2 A = \left[2 \pi \left(\frac{1}{1.2} \right) \right]^2 \times 36 \times 10^{-3}$ $a_{\text{max}} = 0.99 \text{ (ms}^{-2})$	C1 A1	Note: mark is for correct substitution

Mark Scheme

Question	Answer	Marks	Guidance
(c)	Reference to : kinetic energy (of masses and spring), gravitational potential energy (of mass and spring), elastic (potential) energy / strain energy of spring	B1	Note: mark to be awarded only if all 3 forms are quoted Note: potential must be spelled correctly throughout to score this mark
	 KE: <u>zero</u> (at lowest point), increasing to max at equilibrium point, decreasing to <u>zero</u> (at highest point) GPE: increases (as masses rise from lowest to highest point) (clearly worded ora)(AW) 	B1 B1 B1	
	strain / elastic energy: decreases (as masses rise from lowest to highest point) (clearly worded ora) (AW)		
	Total	13	

Q	uesti	on	Answer	Marks	Guidance
5	(a)	(i)	<i>n</i> = number of moles (in sample) AND		Note: both definitions are required
			N = number of atoms / molecules (in sample)	B1	Not: particles / Avogadro's constant
		(ii)	<i>n</i> or <i>N</i> AND T is constant (and R and k are constants)	M1	<i>nRT</i> or <i>NkT</i> is constant is not sufficient
			for a fixed mass (of gas), pV = constant / $p \propto 1/V$	A1	
		(iii)	Shows that $Nm^{-2} \times m^3 = Nm$	B1	Allow: Use of base units for both <i>pV</i> and work done
	(b)	(i)	Calculates $p \ge (1/V)^{-1}$ at two points on the graph	M1	Expected values for pV are 7500 (Nm) or 0.075 (x 10 ⁻⁵) for most points
			values are the same pV = constant / $p \propto 1/V$ / nRT = constant	A1	Allow: Correct calculation of gradient (M1) Calculates intercept = 0 hence graph is through the origin and pV = constant / $p \propto 1/V$ (A1)
		(ii)	Number of moles in 0.050 kg = $0.05/0.016$ (= 3.125)	C1	
			$T = \frac{pv}{nR} = \frac{7500}{3.125 \times 8.31} = 289 \text{(K)}$	C1	Allow: possible ecf from (b)(i) or error in <i>n</i> but apply POT error for use of $pV = 0.075$ leading to $T = 2.9 \times 10^{-3} \text{ K}$
			T = 16 (°C)	A1	Note: Mark is for correct conversion of their $T(K)$ value
					Note : Allow full range of marks for other sensible alternative approaches e.g. use of a molecular mass of 0.032 kg/mol giving a temperature of 305°C
			Total	9	

Q	uesti	on	Answer	Marks	Guidance
6	(a)	(i)	vibrate (about their 'fixed' positions)	B1	Allow: molecules vibrate
		(ii)	greater amplitude / greater frequency (of vibration)	B1	Not: faster / more / bigger /more vigorous (vibrations)
		(iii)	Either internal energy increases Or potential energy (of molecules) increases and the kinetic energy remains constant temperature remains constant	B1 B1	
	(b)	(i)	$P t = m c \Delta \theta$ $48 \times 720 = 0.98 \times c \times (54 - 18)$ $+$ $0.027 \times 850 \times (38-18)$ $c = 970 (J \text{ kg}^{-1} \text{ K}^{-1})$	C1 C1 C1 A1	Note: mark is for correct substitution for total energy input and heat gained by metal Note: mark is for adding a correct substitution for heat gained by insulation into this equation Note: answer to 3 sf = 967 Calculation of $c = 980$ ignoring energy used to heat insulation scores 2 marks
		(ii)	 Without the insulation there will be more heat lost to the surroundings / air (AW) final temperature will be lower OR a lower temperature rise OR more energy will be required to give the same temperature rise / final temperature AND hence c is higher than that calculated in (i) 	M1 A1	Not: lost to wires / data logger
			Total	10	